
I N F L U E N C E  OF  T H E R M A L  R A D I A T I O N  ON T H E  L A M I N A R  

B O U N D A R Y  L A Y E R  OF  A N O N A B S O R B I N G  F L U I D  

V,  V .  S a l o m a t o v  a n d  E .  M. P u z y r e v  UDC 536.3:532.517.2 

The influence of thermal  radiation on the laminar  boundary l aye r  of a nonabsorbing fluid with 
var iable  thermophysical  p roper t ies  flowing around a heat  emitting surface  is investigated un- 
der  natural  and forced convection conditions. 

The interact ion between thermal  radiation and convection originates upon assigning a boundary con- 
dition of the second kind on a hea t  radiating surface over  which a fluid flows. It  causes  a t ransi t ion f rom 
heat  �9 under a boundary condition of the second kind to heat exchange with a boundary condition of 
the f i r s t  kind along the length of the surface  [1]. 

Of the investigations touching upon this problem,  the papers  [1, 2] should be noted. A solution of 
this problem has been obtained in [2] for  a heat insulated surface  (an absolutely non-heat-conducting plate) 
in an a i r  flow with compress ib i l i ty  and dissipation taken into account. An analysis  is ca r r i ed  out in [1] and 
solutions a re  obtained for  the interact ion between thermal  radiation and natural  and forced convection. The 
solutions obtained are  valid only for  l imi t  cases:  small  and la rge  values of the radiation p a r a m e t e r  ~. Solu- 
tions for  a fiat surface  a re  obtained below in a f i r s t  approximation by the method of averaging functional 
cor rec t ions  [3], which pe rmi t  determinat ion of the t empera tu re  and convective heat exchange of a heat emi t -  
ting surface  under forced and natural  convection conditions for  a boundary condition of the second kind. 

Natural  Convection. The s ta t ionary laminar ,  natural  convection of a nonabsorbing fluid around a 
ver t ica l  fiat plate heated by a constant heat flux qw is considered.  Heat t r ansmiss ion  is accomplished dur -  
ing the interact ion of radiant  heat exchange (to the surrounding medium of t empera tu re  T e) with the con-  
vection (to the wetting fluid with t empera tu re  To). Le t  us consider  the fluid to be a pe r fec t  gas (oT = P0T0), 
the Prandt l  number  and specific heat to be constants,  and the coefficients of v iscos i ty  and heat conductivity 
to depend l inear ly  on the t empera tu re  (p/~ = X/X 0 = bT/T0).  Le t  us wri te  the mass ,  momentum, and energy 
conservat ion equations in Dorodnitsyn var iables  ~(x), ~(x, y) [4] by neglecting dissipation: 

n 
Ou + OV = 0  or V=~,f. Ou 0--~ 0--~ 5 (  an, (1) 

0 

Ou + V Ou =_by ~ O'u -4- g~J(T--  To), (2) 
u a'-T oq oll - - - - ~  

OT OT O~T 
= ba o - -  u O~ + V  On ion ~ (3) 

and the boundary conditions under the assumption that the thicknesses  of the thermal  and hydrodynamic 
boundary l aye r s  are  equal: 

�9 o r  q s  (4) 
~1 = 0 --0-~1 ~o b = ~ob ' 

u = v =  o, (5) 

OT 
-q~6  = 0 ,  T = T o ,  (6) 

Oq 
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012 
- - = 0 ,  u = 0 .  
on 

In o rde r  to find the solutions of the sys tem (1)-(7) in a f i r s t  approximation by the Yu. 
method of averaging functional cor rec t ions ,  let  us wri te  (3) and (2) as [3] 

o~T 
fl (~) = bao - -  

and 

f~ (~) = by ~  + g~ (T - -  To), 
o &l 2 

D. Sokolov 

where  

and 

o 0 

6 

0 0 

After  having de te rmined  the constant of integration and fl(0 = a0qk/X06 f rom the boundary conditions 
(4), (6), the integral  of (8) yields the t empera tu re  prof i le  

T --  T O 

F o r  ~ = O it follows f rom (12) that 

6 =  21.ob (T~ - -  To) 2~,ob (0~ - -  I) 

q~ o~T~ (0~ - -  0~) " 

Analogously taking account of (12), we find the veloci ty  prof i le  f rom (9): 

U - -  - -  
g~qh63 ( .q* .q3 5~12 11) 
6~oVo b2 46 ~ +'6-- '~'--46 ~ + - ~ -  " 

Substituting the values u, 3T/0~, OT/0~, 0u/0(  and fl(0 into (10), we obtain a f te r  integrating 

g~ d q~65 - aoq h 
840~?o%b 3 ' d--~- )~o ' 

which we wri te  taking account of (13) as 

5 (0 w - -  1)'d0~ 

(7) 

(8) 

(9) 

(lO) 

(11) 

(12) 

(13) 

(14) 

(i5) 

(0} --01)  4 + 3(0w4-- 1)5d044 5 = 105(~176 (16) 
(0 z - -  0~) 4g~)~4ob2To 

The integral  of the differential  equation (16) for  a boundary condition on the leading edge of the plate 
0w(~ = 0) = i yields a t ranscendental  equation to compute the t empera tu re  change along the plate length 

3 (0~--t)5 -[-G(Oz; O.,)--G(Oz; 1)= 21%a~176 (17) 
5 ( 0 ~ -  0~) ~ e~gCVo ' 

and the re fo re  the convective heat  exchange also 

Nu~ q~ _ t 

~a~ 3(0w--1 ) ~c~eT~ [ (0/; 0~)--G(0/; 1)] 

721 



w h e r e  

G(Oz; 0 ~ ) = ~  (Ow--1)4dOw, 4 a = %,(0o,--1)' +(210~.Ow+7a40 s 
( oz - o.,) 12o~( o ~ -  o~) ~ ~ ~ 

7 4 2 6 1280~ + 4860~ O~ 2700w--4000/.O~+2400w + 1210~0 w 5 ~2 - -  - -  - -  770w)/3840Z ( O~ --  0~) 2 

(77 + 2700~-- 70~)In ~ + (154--5400~ - -  140~) arctg O~ 5 I 
+ 5 1 2 @  - -  160~" In 0 ~z - ~,w"~ " 

(10) 

To analyze the equation obtained, le t  us de te rmine  the re la t ive  contribution of the t e r m  G(0/; 0w) 
-G(0I;  1) in (17) for  the l imi t  cases :  small  (x ~ 0; 0 ~  1) and la rge  (x large;  0 w ~ 0 l since qk ~ 0) boundary 
l a ye r  th icknesses :  

0/22 

j ' (0 w - -  1)4dO~ 
a4 ~4 ~4 
v l - - v w )  

lira J 
3 (0 w - -  I) 5 

0 1 

o 
O0 

(Ow~ 1) 

�9 . (% ~ Oz). 

(20) 

and 

The relat ionship (20) pe rmi t s  representa t ion  of (185 as 

Nut= 0.442libRa ~ Ow-~ 1 (x-+0) (lSa) ' 

Nur 0.409vrbRa ~ 0w-+0 z (x !arge). (185) 

There fo re ,  (18) descr ibes  the t ransi t ion f rom heat  exchange under boundary conditions of the second kind 
(18a) to heat exchange with a boundary condition of the f i r s t  kind (18b) expressed  by the p resence  of thermal  
radiation.  The dif ferences  between the l imi t  solutions and the exact  values a re  not more  than 4% [1]. 

Forced  Convection. The s ta t ionary flow of a nonabsorbing fluid around a flat surface  heated by a 
constant heat flux qw is considered.  Heat t r ansmiss ion  is accomplished during interact ion between the 
radiant  heat  exchange (to the surrounding medium of t empera tu re  T e) and the convection (to the wetting 
fluid with t empera tu re  To). 

The problem in Dorodnitsyn var iables  is descr ibed  mathemat ical ly  by the mass ,  momentum, and 
energy  conservation equations: 

0 u +  0___V_V = 0, (21) 
o~ on 

Ou Ou ~2u 
u - - + V - -  = b y  o - - ,  (225 

0~ 0n On ~ 

u 0---~-'- On On' cp ~, ~ / (23) 

under the boundary conditions 

= o o r  qw - - . ~ ( T ~  - -  ~) ~_ ___q~  (24) 
&l ~,o b i~ob ' 

u = V = O, (25) 

" q ~ f m  OT = o ;  T = T  o , (26) 
0q 

n >/6g a_u_u = 0; u = U 0. (2 7) 
0n 

The solution of the hydrodynamic problem (21), (225, (255, (275 in a f i r s t  approximation by the Yu, 
D. Sokolov method yields the following express ions  for  the veloci ty prof i le  and the boundary l aye r  thickness:  
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2 t t = U o - ~ g  ( - - -~-g)and6g  V 30v'b~Uo (28) 

The solution of (23) by the Yu. D. Sokolov method can be obtained only in the foRowing cases :  taking 
account of dissipation for  P r  = 1 or  for  a heat  insulated surface  without radiat ion without taking account of 
dissipation in the p resence  of radiat ion for  any P r .  

Solving (21), (23) without taking account of dissipation under the boundary conditions (24), (26), we 
obtain the t empera tu re  prof i le  

qh6m [ ~ 2 
T - - T o = - ~ o b  ~1--~-~ ) ,  (29) 

which for  ~ = 0 goes over  into the relat ionship 

and the different ial  equation 

where  

and 

T~ --  T o -- q~8,~ 2)@ (0 w - -  1) or 5~-- (30) 
2~ob o~To ~ (0~-- 0~) 

d q~6.~H(A)-- 6ba~ 
d~ Uo , (31) 

H (A) A A* ~ for A = - -  ~ 1 
2 10 8g 

H(A)= 1--  1 @ 1 1 for A > I .  
A 2h ~ 105 a 

Equation (31), as (15), desc r ibes  the t ransi t ion f rom heat exchange under a boundary condition of the 
second kind to heat exchange with a boundary condition of the f i r s t  kind along the plate length, and can be 
solved only numer ica l ly  in the general  case.  To const ruct  its approximate solution, le t  us replace  the rat io  
A = 5m/bg , equal to Pr-i/3 for  T w = const  (the solution (29) with qk replaced by T w - T  0 according to (30)) 
and 0.78 P r  -ly3 for  qk = const  (the solution (29) for  qk = const) by the mean value A = 0.89 Pr-1/3 and by 
taking account of (30) le t  us reduce  (31) to a form analogous to (16): 

2 (0~ - -  1) dO w (0~. - -  l)2dO~ = ( (~eT~ t 2 6aod ~ 
t ( o l -  0~) ~ + ( 0 ~ -  05) ~ ~ 2~o / VobH(0.89 pr ~ ) (32) 

Integrat ing the equation obtained under a boundary condition on the leading edge of the plate 0w( ~ = 0) 
= 1, we obtain relat ionships  to compute the change in t empera tu re  and convective heat  exchange along the 
length of the sur face :  

1 ( 0 ~ -  l) 2 ~ (33) -~  (,~4 ~4~2 +F(0z;  0-)- -F(0z;  1)= (~176 2 6a~ 

u l - -  u~1 \ 22'~ / UobH (0.89 Pr- ~-) 

and 

Nu~ = X. (T~ - -  To) = 2 ~ [F (% 0~)-s(oz, 1)] , (34) 

, (o 89 Pr -+)  Poo 

where  

1 , +  t 3 I 0l+0  0o 1 
F(0/; 0~)= 40)(0t--0~)4 4 ~ 0Z--0~ , ~ In L--0z--  0wi + 2arctg ~ . 

(35) 
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Using a relation analogous to (20) 

0 9 

�9 ( 0 ~ - - 0 ~ )  ~ ~ 1 Ou,---~ 1 
lira ' 

1 . ( 0 9 - 1 )  3 = ----- 0 O , : - * O l ,  ( 3 6 )  
0 4 2 2 ( } - o ~ )  

we obtain the limit solutions 

and 

Nu~ = H (0.89pr- T) -3-2 b Pe~ 's (0~o --~ 1) (34a) 

l /  i 1 Nu~ = H (0.89 Pr- r )  3 b Pe~ ,s (0~ -,- 0l), (34b) 

which differ by 5% from the exact values [1]. 

In conclusion, let us note that the solution of (23) in the presence of radiation and taking account of 
dissipation agrees for Pr  = 1 with (33) and (34), and the absolute temperature T in the expression (29) for 
the temperature profile is replaced by T. = T + u2/2Op. 

N O T A T I O N  

Tw, Te, To 

Ow ~Tw/T0 
Ol = ~/(qw + ~eT4e)/aeT~ 

qw, qk 
3 = 1/W 0 
(Y 

Ra~ = g~ }(T w -  W0)/v oa 0 

pe~ = v0~/a0 
Y 

/0 4 
0 

are the absolute temperatures of the wall, surrounding medium, and wetting 
fluid, respectively; 

is the dimensionless wall temperature; 
is the dimensionless wall temperature in the case of only radiation heat exchange; 
are the boundary layer thickness, and hydrodynamic and thermal boundary layer  

thickness; 
are the wall and conyective heat flux, respectively; 
is the coefficient of thermal expansion; 
is the Stefan-Boltzmann constant; 
is the Rayleigh criterion; 

is the Peclet criterion; 

are the Dorodnitsyn variables. 
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