INFLUENCE OF THERMAL RADIATION ON THE LAMINAR
BOUNDARY LAYER OF A NONABSORBING FLUID

V, V, Salomatov and E, M, Puzyrev UDC 536.3:532,517.2

The influence of thermal radiation on the laminar boundary layer of a nonabsorbing fluid with
variable thermophysical properties flowing around a heat emitting surface is investigated un-
der natural and forced convection conditions,

The interaction between thermal radiation and convection originates upon assigning a boundary con-
dition of the second kind on a heat radiating surface over which a fluid flows. It causes a fransition from
heat exchange under a boundary condition of the second kind to heat exchange with a boundary condition of
the first kind along the length of the surface [1].

Of the investigations touching upon this problem, the papers [1, 2] should be noted. A solution of
this problem has been obtained in [2] for a heat insulated surface (an absolutely non-heat-conducting plate)
in an air flow with compressibility and dissipation taken into account. An analysis is carried out in [1] and
solutions are obtained for the interaction between thermal radiation and natural and forced convection, The
solutions obtained are valid only for limit cases: small and large values of the radiation parameter £ Solu-
tions for a flat surface are obtained below in a first approximation by the method of averaging functional
corrections [3], which permit determination of the temperature and convective heat exchange of a heat emit-
ting surface under forced and natural convection conditions for a boundary condition of the second kind,

Natural Convection, The stationary laminar, natural convection of a nonabsorbing fluid around a
vertical flat plate heated by a constant heat flux gy is considered, Heat transmission is accomplished dur-
ing the interaction of radiant heat exchange (to the surrounding medium of temperature T,) with the con-
vection (fo the wetting fluid with temperature Ty). Let us consider the fluid to be a perfect gas (pT =pyTy),
the Prandtl number and specific heat to be constants, and the coefficients of viscosity and heat conductivity
to depend linearly on the temperature (u/yy = A/Ay =bT/T;). Let us write the mass, momentum, and energy
conservation equations in Dorodnitsyn variables £(x), n(x, y) [4] by neglecting dissipation:
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and the boundary conditions under the assumption that the thicknesses of the thermal and hydrodynamic
boundary layers are equal: :
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In order to find the solutions of the system (1)-(7) in a first approximation by the Yu, D. Sokolov
method of averaging functional corrections, let us write (3) and (2) as [3] )
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After having determined the constant of integration and f,(§) = ayqr/Ay0 from the boundary conditions
(4), (6), the integral of (8) yields the temperature profile
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For n = 0 it follows from (12) that
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Analogously taking account of (12), we find the velocity profile from (9):
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Substituting the values u, 3T/8¢, 87T/3n, du/8f and f,(£) into (10), we obtain after integrating
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The integral of the differential equation (16) for a boundary condition on the leading edge of the plate
Ow(t =) = 1 yields a transcendental equation to compute the temperature change along the plate length
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To analyze the equation obtained, let us determine the relative contribution of the term G(6y; )
—G(67; 1) in (17) for the limit cases: small (x— 0; €~ 1) and large (x large; 6y — 6; since g — 0) boundary
layer thicknesses:
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The relationship (20) permits representation of (18) as
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and
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Therefore, (18) describes the transition from heat exchange under boundary conditions of the second kind
(18a) to heat exchange with a boundary condition of the first kind (18b) expressed by the presence of thermal
radiation. The differences between the limit solutions and the exact values are not more than 4% [i].

Forced Convection. The stationary flow of a nonabsorbing fluid around a flat surface heated by a
constant heat flux gy, is considered, Heat transmission is accomplished during interaction between the
radiant heat exchange (to the surrounding medium of temperature To) and the convection (to the wetting
fluid with temperature T,).

The problem in Dorodnitsyn variables is described mathematically by the mass, momentum, and
energy conservation equations:
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The solution of the hydrodynamic problem (21), (22), (25), (27) in a first approximation by the Yu.
D. Sokolov method yields the following expressions for the velocity profile and the boundary layer thickness:
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The solution of (23) by the Yu. D. Sokolov method can be obtained only in the following cases: taking
account of dissipation for Pr = 1 or for a heatinsulated surface without radiation without taking account of
dissipation in the presence of radiation for any Pr.

Solving (21), (23) without taking account of dissipation under the boundary conditions (24), (26), we
obtain the temperature profile
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Equation (31), as (15), describes the transition from heat exchange under a boundary condition of the
second kind to heat exchange with a boundary condition of the first kind along the plate length, and can be
solved only numerically in the general case, To construct its approximate solution, let us replace the ratio
A =0bm/0y, equal to Pr~1/? for Ty, = const (the solution (29) with qi replaced by Tw—T, according to (30))
and 0,78 Pr-1/3 for ag = const (the solution (29) for gy = const) by the mean value A = 0.89 Pr~Y/3 and by
taking account of (30) let us reduce (31) to a form analogous to (16):
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Integrating the equation obtained under a boundary condition on the leading edge of the plate Oy (¢ = p)
=1, we obtain relationships to compute the change in temperature and convective heat exchange along the
length of the surface:
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Using a relation analogous to (20)
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which differ by 5% from the exact values [1].

In conclusion, let us note that the solution of (23) in the presence of radiation and taking account of .
dissipation agrees for Pr = 1 with (33) and (34), and the absolute temperature T in the expression (29) for
the temperature profile is replaced by Tx =T + u2/20p.

NOTATION

Tw, Te, Ty are the absolute temperatures of the wall, surrounding medium, and wetting
fluid, respectively; '

0w =Tw/T, is the dimensionless wall temperature;

0; = w/(CIw + oeTE) /oeT;  is the dimensionless wall temperature in the case of only radiation heat exchange;

0, 06g, Om ' ) are the boundary layer thickness, and hydrodynamic and thermal boundary layer
thickness;

Uy U are the wall and convective heat flux, respectively;

B =1/T, is the coefficient of thermal expansion;

o is the Stefan—Boltzmann constant;

Ra; = gBZ(TW—To) /vyay s the Rayleigh criterion;

Peg = Upt/a, ' is the Peclet criterion;

Yy
t=x,m1=1 /poj pdy are the Dorodnitsyn variables,
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